NORTON COMMANDO TORQUE SETTINGS

The torque values below come from the Norton Workshop manuals, information on the Old Britts website, a table provided in an Andover Norton The Source newsletter, recommendations from members of the Access Norton Forum (https://www.accessnorton.com) and personal experience.

The cylinder and head graphics are courtesy Grant Tiller (https://granttiller.com/).
I list what I use - if it conflicts with the workshop manuals or others, I explain. No, I don't use a torque wrench on everything listed, but I have experimented and know how tight I'm getting things.

Foot Pounds	Inch Pounds	Foot Pounds	Inch Pounds
1	12	11	132
2	24	12	144
3	36	13	156
4	48	14	168
5	60	15	180
6	72	16	192
7	84	17	204
8	96	18	216
9	108	19	228
10	120	20	240

NOTES:

- Lubrication makes bolts easier to turn and therefore lower torque should be used.
- Unless otherwise noted, all values here for standard steel on standard steel threads are for clean and dry threads. This includes Zinc and Cadmium plated.
- Anytime you are threading a stainless-steel nut on to a stainless-steel bolt, it is good practice to put a dab of anti-seize on the threads. Stainless tends to work harden and "weld" itself together.
- Plated Steel or stainless-steel screws in aluminum casings require great care if fine thread. $5 \mathrm{ft}-\mathrm{lb}$. with anti-seize is fine with course threads but is probably too much with fine threads like those used for the gearbox. I always use anti-seize on Stainless into aluminum but only $4 \mathrm{ft}-\mathrm{lb}$ ($48 \mathrm{in}-\mathrm{lb}$.) for fine threads.

GENERAL:

There is a table in the MK3 Workshop Manual called "General Guidance Table - Torque Recommendations" that supplies much more info. The plating, thread pitch, hardness, lubrication, and other factors matter. These values for plated, unlubricated UNF fasteners are from that table:

- 1/4" Bolt $8 \mathrm{ft}-\mathrm{lb}$.
- $5 / 16$ " Bolt $15 \mathrm{ft}-\mathrm{lb}$.
- $3 / 8^{\prime \prime}$ Bolt $25 \mathrm{ft}-\mathrm{lb}$.
- 7/16" Bolt $40 \mathrm{ft}-\mathrm{lb}$.
- $1 / 2^{\prime \prime}$ Bolt $60 \mathrm{ft}-\mathrm{lb}$.
- $9 / 16^{\prime \prime}$ Bolt $80 \mathrm{ft}-\mathrm{lb}$.

ENGINE:

- Crankcase top front nut ($1 / 4$ " stud) 72 in-lb)
- Crankcase top rear nut ($3 / 8$ " stud) $25 \mathrm{ft}-\mathrm{lb}$.
- Crankcase bottom screws ($1 / 4$ " x $20 \times 1-1 / 4$ - I use stainless steel socket cap screws, anti-seize, and 72 in-lb.
- Crankcase front short bolt/nut ($5 / 16$ ") $15 \mathrm{ft}-\mathrm{lb}$.
- Front ISO to Crankcase Mounting Bolts (3.8 in., $4-1 / 8 \mathrm{in}$., 2 bolts, 06.3213) $25 \mathrm{ft}-\mathrm{lb}$.
- Cradle to Crankcase Mounting Bolts (3.8 in., $4-1 / 4 \mathrm{in}$., 2 bolts, 06.3212) $25 \mathrm{ft}-\mathrm{lb}$.
- Cradle to Crankcase Mounting Bolt ($5 / 16 \mathrm{in} ., 4-1 / 4 \mathrm{in} ., 1$ bolt, 06.3212) $15 \mathrm{ft}-\mathrm{lb}$.
- Cylinder head rear nut ($3 / 8$ in., 1 nut) $30 \mathrm{ft}-\mathrm{lb}$. See tightening order below (\#2)
- Cylinder head sleeve nuts ($3 / 8 \mathrm{in} ., 2$ nuts) $30 \mathrm{ft}-\mathrm{lb}$. See tightening order below (\#'s 7,8)
- Cylinder head center bolt (3/8 in., 1 bolt) $30 \mathrm{ft}-\mathrm{lb}$. See tightening order below (\#1)
- Cylinder head outside bolts ($3 / 8 \mathrm{in}$., 4 bolts) $30 \mathrm{ft}-\mathrm{lb}$. See tightening order below (\#'s $3,4,5,6$)
- Cylinder head nuts ($5 / 16$ in., 2 nuts) $20 \mathrm{ft}-\mathrm{lb}$. See tightening order below (\#'s 9,10)
- 750 Cylinder base nuts ($3 / 8$ in., 6 nuts) $25 \mathrm{ft}-\mathrm{lb}$. See tightening order below
- 750 Cylinder base nuts ($5 / 16 \mathrm{in}, 3$ nuts) $20 \mathrm{ft}-\mathrm{lb}$. See tightening order below
- 850 Cylinder base nuts ($3 / 8 \mathrm{in}, 1$ nut) $25 \mathrm{ft}-\mathrm{lb}$. See tightening order below
- 850 Cylinder base nuts ($5 / 16 \mathrm{in}, 4$ nuts) $20 \mathrm{ft}-\mathrm{lb}$. See tightening order below
- 850 Cylinder barrel Allen bolts (4 bolts, 06-3085, through cylinder) $30 \mathrm{ft}-\mathrm{lb}$.
- Crankshaft nuts
- Pre-MK3 (2 long and 4 short studs, 12 nuts, $5 / 16$ ") $25 \mathrm{ft}-\mathrm{lb}$.
- Pre-MK3 (4 bolts and 2 studs, 8 nuts, $5 / 16^{\prime \prime}$) $25 \mathrm{ft}-\mathrm{lb}$.
- MK3 (14 nuts, 3/8") $30 \mathrm{ft}-\mathrm{lb}$. the MK3 workshop manual says to use Loctite.
- Connecting rod nuts (4 nuts, 06-7827) $25 \mathrm{ft}-\mathrm{lb}$. Note: I've seen lots of different recommendations on the Internet for these, but every workshop manual agrees with me. It's fine to reuse the bolts, new nuts must be used every time, the threads must be clean and dry, do not use Loctite, do not peen the nuts.
- Rocker spindle cover plate bolts (8 bolts) $8 \mathrm{ft}-\mathrm{lb}$.
- Spark plug $15 \mathrm{ft}-\mathrm{lb}$.

Note: See Timing Case and Primary Case below for more engine related items.

Cylinder Head Tightening Order:

The graphic shows the tightening order (numbers), torque (colors), and wrench sizes. I Start at $10 \mathrm{ft}-\mathrm{lb}$ and follow the sequence, then $15 \mathrm{ft}-\mathrm{lb}$, and follow the sequence, and then the final torque and follow the sequence.

Note 1: Norton Service Bulletin N3/68 states that for the 750 Commando the $3 / 8$ " bolt/stud torque should be increased to $35 \mathrm{ft}-\mathrm{lb}$ and the $5 / 16^{\prime \prime}$ bolts should be increased to $25 \mathrm{ft}-\mathrm{lb}$. However, the 850 workshop manuals all still say $30 \mathrm{ft}-\mathrm{lb}$ and $20 \mathrm{ft}-\mathrm{lb}$.

Note 2: If you're using the head fastening kit from cNw the smaller nuts/bolts torque value is $25 \mathrm{ft}-\mathrm{lb}$ and the large are $35 \mathrm{ft}-\mathrm{lb}$ and 12-point sockets and wrenches are needed. The procedure and tightening order are the same.

Note 3: Here and in the next several pages, $\mathrm{WW}=\underline{\text { Whitworth }}$ wrench of the size indicated. It does not indicate the thread pattern - British threads generally go by the diameter of the bolt and not the head size. Most British threads in a Norton are BSC/CEI or BSF, not BSW (Whitworth). AF = Across flats. In other words, 7/16" AF simply means a $7 / 16^{\prime \prime}$ (SAE) wrench which is usually a UNF or UNC thread. In this case the wrench to use is a SAE 7/16" but the studs are BSC/CEI.

Note 4: 750s originally had sleeve nuts (the ones in the front that secure the head from underneath) that were hex shaped for their full length - part NM. 24260 . The later bikes used sleeve nuts that were round except that the end is $7 / 16$ " AF. The older ones are difficult to work with so it's best to replace them with the new type part 06.3192 . The two $7 / 16$ " AF are $1 / 4$ " WW ($5 / 16$ " BS) if you have the older type.

Cylinder Tightening Order:

The three graphics below show the tightening order (numbers), torque (colors), and wrench sizes for the cylinder base nuts for the 750 s and the cylinder base nuts and through Allen bolts for the 850 s . I start at $10 \mathrm{ft}-\mathrm{lb}$ and follow the sequence, then $15 \mathrm{ft}-\mathrm{lb}$, and follow the sequence, and then the final torque and follow the sequence.

Cylinder Base 750 Tightening Order, Torque, and Wrench Size Prior to 1972:

Cylinder Base 750 Tightening Order, Torque, and Wrench Size 1972/3:

Cylinder Base 850 Tightening Order, Torque, and Wrench Size:

TIMING CASE:

- Cam chain tensioner nuts (2 nuts, 06-2692) $15 \mathrm{ft}-\mathrm{lb}$. (This could be too much $10-12 \mathrm{ft}-\mathrm{lb}$ sounds better and the "star" washers make it seem like you will never get there)
- Oil pump stud nuts (no washers, 2 nuts, 06-7592)
- 70-73 Workshop (065246): $15 \mathrm{ft}-\mathrm{lb}$.
- MK3 Workshop (00-4224): 10-12 ft-lb.
- Andover Norton: $15 \mathrm{ft}-\mathrm{lb}$.

If Heli-Coils are present $15 \mathrm{ft}-\mathrm{lb}$. is probably fine, if not, then it's too much.

- Oil pump worm gear nut (13-1303, on oil pump shaft) $25 \mathrm{ft}-\mathrm{lb}$.
- Oil pump worm gear/nut (06-7889, LH thread, on end of crankshaft) I have found no authoritative source. Th workshop manuals simply say "tighten." Since the crankshaft is "turning into it," it probably can't loosen. I use $15 \mathrm{ft}-\mathrm{lb}$.
- Camshaft sprocket nut (06-7774) This is not specified by any authoritative source I can find. I spoke with a car engine builder with about 40 years' experience, and he said that with chilled cast iron cams, that they use $15 \mathrm{ft}-\mathrm{lb}$ and a small dot of red Loctite. It is documented that with the PW3 cam $15 \mathrm{ft}-\mathrm{lb}$ is correct. I use Hepolite cams which are chilled cast iron and I use $40 \mathrm{ft}-\mathrm{lb}$ and clean threads. Since the cam is "turning into the nut," it's likely that it won't come loose at much lower torque.
- Oil pressure release valve (2 nuts) $25 \mathrm{ft}-\mathrm{lb}$.
- Timing cover screws (12 screws, $1-06-2685$; 7-2686; 4-06-2687) 5-6 ft-lb (60-72 in-lb.) The graphic below shows the tightening order (numbers) and relative screw lengths. I start at $20 \mathrm{in}-\mathrm{lb}$ and follow the sequence, then $40 \mathrm{in}-\mathrm{lb}$, and follow the sequence, and then the final torque and follow the sequence.

Note: The lengths in the diagram are for pre-MK3 engines. MK3 engines still use 12 screws (06-5533) but they are all 1-1/4" long. If you prefer the slotted screws, you could use 12 of 06-2685 (1-1/4" long) or 12 of $06-2686$ (1-1/8" long)

PRIMARY CASE:

- Pre-MK3 Chaincase Attachment Nut (one nut, 06-0367) $25 \mathrm{ft}-\mathrm{lb}$.
- Alternator mounting stud nuts (3 nuts, 06-2692) $15 \mathrm{ft}-\mathrm{lb}$.
- Inner Chaincase fixing bolts (3 bolts, 06-2669) 5-6 ft-lb (60-72 in-lb.)
- Rotor nut, Crankshaft (1 nut, 06-0387) $70 \mathrm{ft}-\mathrm{lb}$.
- Alternator mounting stud nuts (3 nuts) $15 \mathrm{ft}-\mathrm{lb}$.
- Clutch to main shaft nut (1 nut, 04-0373) $50 \mathrm{ft}-\mathrm{lb}$.) The factory torque setting for this nut is $70 \mathrm{ft}-\mathrm{lb}$.
- According to Old Britts and others, this torque setting runs the risk of breaking the clutch locating circlip (06-0752), they say to blue thread locker on this nut and torque to $40 \mathrm{ft}-\mathrm{lb}$ and if you want to use $70 \mathrm{ft}-\mathrm{lb}$. you should use a new circlip each time this nut is removed.
- Andover Norton says $50 \mathrm{ft}-\mathrm{lb}$.
- I do use a new circlip and 850-type tab washer (06.3459) each time, no thread locker, and $50 \mathrm{ft}-\mathrm{lb}$.
- If using the tab washer, it is imperative that you also use a 06.3447 washer between the tab washer and nut.
- If you don't want to use the tab washer and plain washer, then use the lock washer used on earlier bikes (04.0374).
- MK3 Chain case outer screws (10 screws, 06-5533) 5-6 ft-lb (60-72 in-lb.)
- MK3 Long starter screw (1 screw, 06-5532) $8 \mathrm{ft}-\mathrm{lb}$.
- MK3 Short starter screws (2 screws, 06-4729) $8 \mathrm{ft}-\mathrm{lb}$.

GEARBOX:

- The inner cover nuts (7 nuts, 00-0004) $12 \mathrm{ft}-\mathrm{lb}$. Tighten in a crisscross pattern to $4 \mathrm{ft}-\mathrm{lb}$, then to $8 \mathrm{ft}-\mathrm{lb}$ and finally to $12 \mathrm{ft}-\mathrm{lb}$
- Outer cover screws (5 screws, $00-0482$) $50 \mathrm{in}-\mathrm{lb}$.) These are fine threads. Use anti-seize, tighten to $30 \mathrm{in}-\mathrm{lb}$ in a crisscross pattern and then to $50 \mathrm{in}-\mathrm{lb}$.
- Timing-side main shaft nut (1 nut, 04-0023) 40-50 ft-lb.
- Final drive sprocket nut (Countershaft) (1 nut, 04-0070, LH Thread) $80 \mathrm{ft}-\mathrm{lb}$. This can be hard to do unless you have the correct very deep socket. I get it as tight as I can and call it good. Caution: Fine threads and the sleeve gear has splines, so the thread engagement is small. It is easy to overtighten and damage the sleeve gear threads. If the keeper doesn't line up, try a different rotation - don't try to tighten enough to get it line up!
- Top gearbox fixing bolt (06-2563) $55 \mathrm{ft}-\mathrm{lb}$.
- Bottom gearbox fixing nuts (2 nuts 14.0305) $55 \mathrm{ft}-\mathrm{lb}$. The stud is part 06-0597
- Kick start pinch bolt (1 bolt, 06-0599) $25 \mathrm{ft}-\mathrm{lb}$.
- Gearshift pinch bolt (1 bolts, 04-0105) $15 \mathrm{ft}-\mathrm{lb}$.
- Drain plug (04.0138 or 04.0138 M$) 10 \mathrm{ft}-\mathrm{lb}$. It is especially important to not over tighten the magnetic version.

FRONT FORKS / WHEEL:

Note: The first 5 bullets below specify the tightening order for the front end. At each step it is important to be sure the forks are 100% parallel to each other. If you have short gaiters, this is easy with a piece of plate glass across the forks. With full gaiters, it must be done on the sliders which is more difficult and is usually best done by sighting across them.

- Fork top bolts (tighten first, 2 bolts, 06-0345) 30-40 ft-lb.
- Steering head stem nut (tighten second, 1 nut, 0700101) 25-30 ft-lb.
- Spindle (axle) nut (tighten third, 1 nut, 06-0361) $60 \mathrm{ft}-\mathrm{lb}$.
- Yoke pinch bolts (tighten fourth, 2 Allen bolts, 06-1911) $30 \mathrm{ft}-\mathrm{lb}$.
- Spindle (axle) pinch bolt/nut (tighten last) $10-15 \mathrm{ft}-\mathrm{lb}$.
- Fork damper tube anchor bolt (1 bolt each fork) $10 \mathrm{ft}-\mathrm{lb}$.
- Nut mudguard bridge stud (2 each fork) $8 \mathrm{ft}-\mathrm{lb}$.
- Disc to hub nuts (5 nuts) $20 \mathrm{ft}-\mathrm{lb}$.
- Front mudguard stays bolts (bottom, 4 bolts) $10 \mathrm{ft}-\mathrm{lb}$.

REAR WHEEL:

- Rear wheel nut (dummy spindle, 1 nut) $80 \mathrm{ft}-\mathrm{lb}$. Note: You must apply the rear brake while tightening this so the brake backing plate is centralized in the brake hub. Norton simply says, "tighten fully." Andover Norton and Old Britts say $80 \mathrm{ft}-\mathrm{lb}$. I say that is more than needed. I make it tight with a standard ratchet - maybe $40-45 \mathrm{ft}-\mathrm{lb}$.
- Rear wheel spindle (one bolt) $80 \mathrm{ft}-\mathrm{lb}$. Norton simply says: "tighten fully". Andover Norton and Old Britts say $80 \mathrm{ft}-\mathrm{lb}$. I say that is more than needed and will damage the speedometer drive. I make it tight with a standard ratchet - maybe $40-45 \mathrm{ft}-\mathrm{lb}$.
- Don Pender's stainless steel one-piece rear axle $40-45 \mathrm{ft}-\mathrm{lb}$. Since this is stainless steel, anti-seize must be used to prevent galling. Note: you must apply the rear brake while tightening this so the brake backing plate is centered on the brake hub.
- Brake Drum Sleeve Nut (three nuts, 06-0323) $40 \mathrm{ft}-\mathrm{lb}$. Note: Only used on older, non-cush hubs.
- Wheel adjuster nuts (2 nuts) $8 \mathrm{ft}-\mathrm{lb}$.
- Speedo cable to speedo Gear Box (06-7904) $15 \mathrm{ft}-\mathrm{lb}$.
- Swing arm pivot pin bolt (one bolt) $10 \mathrm{ft}-\mathrm{lb}$.
- Rear mudguard nut (top, 2 nuts) $8 \mathrm{ft}-\mathrm{lb}$.
- Rear mudguard nut 5/16 (1 nut) $15 \mathrm{ft}-\mathrm{lb}$.
- Rear mudguard nut 1.4 (bottom, 2 nuts) $8 \mathrm{ft}-\mathrm{lb}$.
- Tail lamp pillar nut (2 nuts) 24 in -lb.
- Lift handle-clip nut $1 / 4$ (1 nut) $8 \mathrm{ft}-\mathrm{lb}$.

ISOLASTICS/ REAR SUPPORT PLATE:

- Front bolt nut (1 nut) $30 \mathrm{ft}-\mathrm{lb}$.
- Rear stud nuts (2 nuts) $30 \mathrm{ft}-\mathrm{lb}$.
- Front supporting plate nuts (2 bolts) $25 \mathrm{ft}-\mathrm{lb}$.
- Rear engine plate nut (1 bolt, bottom) $20 \mathrm{ft}-\mathrm{lb}$.
- Rear engine plate nut (2 bolts, upper) $30 \mathrm{ft}-\mathrm{lb}$.
- Engine steady to head screw (3 screws) $12 \mathrm{ft}-\mathrm{lb}$.
- Engine steady stud nut (2 studs) $12 \mathrm{ft}-\mathrm{lb}$.

CALIPER:

- Front caliper to fork bolts (2 bolts\nuts, 0700291) 25-30 ft-lb.
- End plug (original caliper, 1 plug, 06-2185) $25 \mathrm{ft}-\mathrm{lb}$. It would take a special/weird tool to set this torque. Since there is a rubber seal, I just get it tight using the tool from Andover Norton which probably gets it to $25 \mathrm{ft}-\mathrm{lb}$ or more.

OIL TANK AND FITTINGS:

- Oil tank mounting bolt (1 bolt, 06-0652) $4 \mathrm{ft}-\mathrm{lb}$.
- Oil junction block bolt (1 bolt, 03-0448) $8 \mathrm{ft}-\mathrm{lb}$.
- Rubber mounting bolt nuts (2 bolts, 4 nuts, $03-3057$) $4 \mathrm{ft}-\mathrm{lb}$.
- Oil filter mounting bolts (2 bolts, 14-0114) $8 \mathrm{ft}-\mathrm{lb}$.
- Rocker feed banjo bolts (3 bolts, 06-7696) $15 \mathrm{ft}-\mathrm{lb}$.
- Oil Tank Filter Bolt (1 filter bolt, 06-1159) Since this uses two soft aluminum washers, I tighten to $10 \mathrm{ft}-\mathrm{lb}$ and watch it to see if it leaks, if so, I tighten slightly until it doesn't. If over tightened, it will certainly leak!

MISCELLANEOUS:

- Side stand nut (1972-later, one nut) 50-60 ft-lb. Since the bolt goes in from the bottom and is thin headed and since you can't get a torque wrench on the nut with the primary installed, just make it very tight. Next time you have the inner and outer primary off, you can do it with a torque wrench if you like!
- Center stand nuts (1 nut each side) $45 \mathrm{ft}-\mathrm{lb}$.
- Coil mounting bracket nuts (2 nuts) $10 \mathrm{in}-\mathrm{lb}$.
- Kick start pinch bolt (1 bolt/nut) $25 \mathrm{ft}-\mathrm{lb}$.
- Balance pipe bolt, exhaust (2 bolts/nuts) $7 \mathrm{ft}-\mathrm{lb}$.
- Carburetor stud nut (4 nuts) $8 \mathrm{ft}-\mathrm{lb}$.
- Carburetor fixing screws (4 screws) $8 \mathrm{ft}-\mathrm{lb}$.
- Shock mounting nuts (2 each shock) $25 \mathrm{ft}-\mathrm{lb}$.
- Chain guard nut (2 nuts) $8 \mathrm{ft}-\mathrm{lb}$.
- Front brake lever pivot bolt (1 bolt) $25 \mathrm{ft}-\mathrm{lb}$.
- Front hydraulic hose nut (1 nut) $15 \mathrm{ft}-\mathrm{lb}$.
- Muffler clamp pinch bolt (1 bolt) $9 \mathrm{ft}-\mathrm{lb}$.
- Zener diode nut (one nut) 24 in-lb.
- Coil clip bolts (2 each coil) 10 in-lb.
- Coil mounting bracket bolts (4 bolts) $8 \mathrm{ft}-\mathrm{lb}$.
- Reflector nut 20 in-lb.
- Screw, condenser pack (2 screws) 24 in-lb.
- Nut, condenser pack (2 nuts) 24 in-lb.
- Horn nut (2 nuts) $8 \mathrm{ft}-\mathrm{lb}$.
- Head lamp bolt (2 bolts) $15 \mathrm{ft}-\mathrm{lb}$.

FOOTRESTS:

- Rear side plate mounting nut (2 each plate) $25 \mathrm{ft}-\mathrm{lb}$.
- Footpeg nuts (1 each footpeg) $40 \mathrm{ft}-\mathrm{lb}$.
- Footrest mounting flange nuts (3 on left 2 on right) $8 \mathrm{ft}-\mathrm{lb}$.
- Footrest mounting bolt (1 on right) $15 \mathrm{ft}-\mathrm{lb}$.
- Passenger footrest bolt\nut (1 each) $25 \mathrm{ft}-\mathrm{lb}$.
- Passenger pivot bolt (1 each rest) $8 \mathrm{ft}-\mathrm{lb}$.
- Mounting rubber nuts (2 each rubber) $10 \mathrm{ft}-\mathrm{lb}$.

